
Linnet: Limit Order Books Within Switches
Xinpeng Hong, Changgang Zheng, Stefan Zohren, and Noa Zilberman

University of Oxford
{xinpeng.hong, changgang.zheng, stefan.zohren, noa.zilberman}@eng.ox.ac.uk

ABSTRACT
Financial trading often relies nowadays on machine learning. How-
ever, many trading applications require very short response times,
which cannot always be supported by traditional machine learning
frameworks. We present Linnet, providing financial market predic-
tion within programmable switches. Linnet builds limit order books
from high-frequency market data feeds within the switch, and uses
them for machine-learning based market prediction. Linnet demon-
strates the potential to predict future stock price movements with
high accuracy and low latency, increasing financial gains.

CCS CONCEPTS
• Networks → In-network processing; Programmable net-
works; • Computing methodologies→Machine learning.

KEYWORDS
In-network computing, machine learning, programmable switches,
P4, microstructure market data, limit order books, time series pre-
diction

ACM Reference Format:
Xinpeng Hong, Changgang Zheng, Stefan Zohren, and Noa Zilberman. 2022.
Linnet: Limit Order Books Within Switches. In ACM SIGCOMM 2022 Con-
ference (SIGCOMM ’22 Demos and Posters), August 22–26, 2022, Amsterdam,
Netherlands. ACM, New York, NY, USA, 3 pages. https://doi.org/10.1145/
3546037.3546057

1 INTRODUCTION
High frequency trading (HFT) requires executing trades at high
speed, with latency measured in microseconds [5] and where ev-
ery nanosecond counts. Machine learning (ML) and deep learning
approaches are applied nowadays to problems arising in HFT, in-
creasing the demand for reduced latency across all components of
the trade.

Over the past few decades, equity and derivative markets have
witnessed an increasing use of electronic limit order books (LOBs) [3].
Formed by unmatched limit orders with specified prices, LOBs pro-
vide real-time information for traders and support market trans-
parency [1]. In most electronic marketplaces, bids and offers are
matched based on price/time priority rules [8]. When multiple or-
ders with the same price are queuing for execution, the earliest
active order is given top trading priority. Fast response time makes
the difference between being the first to last order executed.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGCOMM ’22 Demos and Posters, August 22–26, 2022, Amsterdam, Netherlands
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9434-5/22/08.
https://doi.org/10.1145/3546037.3546057

In-network computing executes applications within network
devices with low latency and high throughput [12]. Although the
application of in-network computing to ML is constrained, it has
been demonstrated that trained ML models can be deployed within
network devices to solve classification tasks [11, 13, 16]. Therefore,
in-network ML becomes a potential solution for low latency trading
as well as numerous time-sensitive financial applications.

This work focuses on exploring the application of in-network
ML to a typical problem in HFT: predicting future price movements
from market microstructure signals. Such prediction leads to higher
profitability and was shown to be feasible (ML-wise) in previous
work [6]. We design and implement Linnet, an in-network appli-
cation prototype for generating, keeping, and updating an LOB
based on order-based market data feeds, and using it to predict fu-
ture price movements. A preliminary evaluation shows that Linnet
achieves minimal loss of accuracy and f1-score compared with a
server-based benchmark. Linnet was implemented on a behavioral
model version 2 (bmv2), and will be extended to switch-ASICs or
data processing units (DPUs).

2 HIGH-LEVEL ARCHITECTURE
Linnet accelerates stock price movement prediction by construct-
ing and updating LOBs within the programmable data plane. The
high-level system architecture is shown in Figure 1: in traditional
solutions, orders’ information goes from the stock exchange to
the traders’ servers through a switch, and the LOB is constructed
within the server (and its accelerators). In contrast, in Linnet the
LOB construction and ML algorithm are implemented within the
switch, eliminating the latency of getting to the server, and its
processing latency.

Stock Exchange(s)

Traditional Solution

Linnet Solution

Linnet Data Path

Traditional Data Path Data Plane

LOB Construction

Feature Extraction

ML Model Inference

Standard Switch Functionality
(e.g., Packet Forwarding)

Figure 1: Architecture Design of the Linnet prototype.

NASDAQ is the world’s first electronic stock market. A NASDAQ
trace of market by order (MBO) data [10] is used for this study. MBO
messages are used to construct an LOB within a P4-programmable
network device, and then information from the LOB is used to
predict stock price movement using a trained ML model, running
within the same device. For training and exploration purposes,
only a single stock is used at a time, where stocks are identified
within MBO messages. The constructed LOB follows the principle

https://doi.org/10.1145/3546037.3546057
https://doi.org/10.1145/3546037.3546057
https://doi.org/10.1145/3546037.3546057


SIGCOMM ’22 Demos and Posters, August 22–26, 2022, Amsterdam, Netherlands Xinpeng Hong, Changgang Zheng, Stefan Zohren, and Noa Zilberman

of price/time priority. At each timestamp, features are extracted
from the current state of the LOB, including different levels on both
buy and sell sides, with information on both price and volume. The
current bid-ask midpoint (mid-price) is calculated in order to create
labels that represent the direction of price changes.

3 LIMIT ORDER BOOKS IN LINNET
LOBs are implicitly derived from MBO data [14]. The typical struc-
ture of MBO data includes the fields timestamp, type, ID, side, size
and price of an order. In Figure 2 Step ❶, “Type” refers to the type
of instruction (to add, cancel, or update an order) and “Side” shows
whether an order is a bid (buy) order or an ask (sell) order. Only
add-order messages are currently used to update an LOB in our
prototype. Figure 2 Step ❷ demonstrates an exemplary slice of an
LOB. It includes two types of orders residing in the bid side and ask
side. While a bid order is used to buy an asset at or below a specified
price, an ask order does the opposite, selling an asset at or above a
given price [15]. A mid-price sits at the midpoint of the highest bid
price and the lowest ask price. Figure 2 Step ❸ illustrates how an
LOB is updated with MBO messages. In the shown workflow, ask
orders are used as an example, and bid orders are handled by the
algorithm in a similar way.

Size

Price

Bid Side Ask Side

Mid-Price

Time Type ID Side Size Price

2

1 3

Bid Side
Check Side

Start

Ask Side

Logic 
Similar to 
Ask Side

Order Price
Which Is Larger

Best Bid Price

Add Size on
Order Price

Offset Size from
Best Bid Price to

Order Price

Reset Best Bid Price
And Best Ask Price

Reset Best
Ask Price If
Necessary

Recalculate
Mid-Price

Input MBO

Market By Order Data (MBO)

Limit Order Book (LOB)

Workflow of Updating an
LOB with MBO Messages

Figure 2: ❶ Market by order (MBO) data fields, ❷ graphical
representation of a limit order book (LOB), and ❸ workflow
of updating an LOB with MBO messages.

One of the biggest challenges of implementing in the data plane
the update process of an LOB is that P4 inherently does not support
loops. Consequently, there is a trade-off between accurate extrac-
tion of high-level features from the LOB and resource consumption
within switches. In our prototype’s implementation, if any block of
code needs to be executed a number of times, loop unrolling is used.
This prevents excessive resource overhead in the switch without a
significant loss of prediction accuracy.

4 PRELIMINARY EVALUATION
NASDAQ’s Historical TotalView-ITCH sample data feeds [10] are
reconstructed and filtered using [2], with the trace used to test Lin-
net. Planter, a framework for in-network ML deployment [17, 18],
provides the ML substrate, with server-side benchmarks based on
Scikit-learn [9]. Given their wide use in similar tasks over the past

decades, naive Bayes (NB), decision trees (DTs), random forests
(RFs), and extreme gradient boosting (XGB) are chosen for stock
price movement prediction. The features used for ML model train-
ing are the volumes at the first three levels of an LOB, as well as the
mid-price. Since financial data is highly stochastic with low signal-
to-noise ratio, a smoothing labelling method is applied as part of
the training to produce more consistent signals [7]. The synthetic
minority over-sampling technique (SMOTE) is used to solve the
class-imbalance problem [4]. Taking three different stocks (COST,
NVDA, and ASML) as an example, Table 1 shows the preliminary
evaluation results in terms of accuracy (ACC) and f1-score (F1).

COST NVDA ASML
Switch (L) Sklearn (U) Switch (L) Sklearn (U) Switch (L) Sklearn (U)

Model ACC F1 ACC F1 ACC F1 ACC F1 ACC F1 ACC F1
NB 92.9 45.7 93.1 45.9 79.8 66.2 81.3 66.7 89.2 43.5 91.3 46.2
DT 92.5 61.5 93.4 62.6 91.8 56.2 96.2 63.1 97.0 79.9 98.7 90.0
RF 93.1 62.3 93.2 62.4 96.3 68.2 97.9 73.7 96.0 69.3 98.2 82.3
XGB 86.3 79.8 90.0 83.3 95.7 62.9 97.9 69.5 95.1 72.0 95.1 76.1

Table 1: Preliminary evaluation results (%). Linnet runs on
a switch with (L)imited model size and the benchmark runs
on a server with (U)nlimited model size.

Among all themodels for these three stocks, the average accuracy
loss of Linnet is 1.7% compared to the benchmark while the average
f1-score loss is 4.5%. Linnet achieves the same accuracy as the
benchmark in some cases. Given that the size of the models mapped
into the programmable switch was limited, Linnet’s performance
is promising.

5 CONCLUSION AND FUTUREWORK
This paper presents the application of in-network ML for time-
sensitive financial trading. Linnet, a prototype for building and
updating limit order books in the data plane, is designed and de-
ployed on programmable network devices. The preliminary evalua-
tion shows that Linnet enables accurate feature extraction, keeping
high prediction accuracy compared with the benchmark. In future
work, Linnet will be extended to more types of programmable net-
work devices under more complex real-world scenarios, and will
be evaluated for latency and resource overhead.

ACKNOWLEDGMENTS
This work was partly funded by VMWare and we acknowledge
support from Intel. Stefan Zohren thanks the Oxford-Man Institute
of Quantitative Finance for financial support.

REFERENCES
[1] Shmuel Baruch. 2005. Who benefits from an open limit-order book? The Journal

of Business 78, 4 (2005), 1267–1306.
[2] Martino Bernasconi-De-Luca, Luigi Fusco, and Ozrenka Dragić. 2021. marti-

nobdl/ITCH: ITCH50Converter. https://doi.org/10.5281/ZENODO.5209267
[3] Charles Cao, Oliver Hansch, and Xiaoxin Wang. 2009. The information content

of an open limit-order book. Journal of Futures Markets: Futures, Options, and
Other Derivative Products 29, 1 (2009), 16–41.

[4] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer.
2002. SMOTE: synthetic minority over-sampling technique. Journal of artificial
intelligence research 16 (2002), 321–357.

[5] Michael A Goldstein, Pavitra Kumar, and Frank C Graves. 2014. Computerized
and high-frequency trading. Financial Review 49, 2 (2014), 177–202.

https://doi.org/10.5281/ZENODO.5209267


Linnet: Limit Order Books Within Switches SIGCOMM ’22 Demos and Posters, August 22–26, 2022, Amsterdam, Netherlands

[6] Michael Kearns and Yuriy Nevmyvaka. 2013. Machine learning for market
microstructure and high frequency trading. High Frequency Trading: New Realities
for Traders, Markets, and Regulators (2013).

[7] Adamantios Ntakaris, Martin Magris, Juho Kanniainen, Moncef Gabbouj, and
Alexandros Iosifidis. 2018. Benchmark dataset for mid-price forecasting of limit
order book data with machine learning methods. Journal of Forecasting 37, 8
(2018), 852–866.

[8] Christine A Parlour and Duane J Seppi. 2008. Limit order markets: A survey.
Handbook of financial intermediation and banking 5 (2008), 63–95.

[9] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss,
Vincent Dubourg, et al. 2011. Scikit-learn: Machine learning in Python. the
Journal of machine Learning research 12 (2011), 2825–2830.

[10] NASDAQ OMX PSX. 2014. NASDAQ OMX PSX TotalView-ITCH 5.0.
(2014). http://www.nasdaqtrader.com/content/technicalsupport/specifications/
dataproducts/PSXTVITCHSpecification_5.0.pdf

[11] Davide Sanvito, Giuseppe Siracusano, and Roberto Bifulco. 2018. Can the network
be the AI accelerator?. In Proceedings of the 2018 Morning Workshop on In-Network
Computing. 20–25.

[12] Yuta Tokusashi, Huynh Tu Dang, Fernando Pedone, Robert Soulé, and Noa
Zilberman. 2019. The case for in-network computing on demand. In Proceedings
of the Fourteenth EuroSys Conference 2019. 1–16.

[13] Zhaoqi Xiong and Noa Zilberman. 2019. Do switches dream of machine learning?
toward in-network classification. In Proceedings of the 18th ACM workshop on hot
topics in networks. 25–33.

[14] Zihao Zhang, Bryan Lim, and Stefan Zohren. 2021. Deep learning for market by
order data. Applied Mathematical Finance 28, 1 (2021), 79–95.

[15] Zihao Zhang, Stefan Zohren, and Stephen Roberts. 2019. Deeplob: Deep con-
volutional neural networks for limit order books. IEEE Transactions on Signal
Processing 67, 11 (2019), 3001–3012.

[16] Changgang Zheng, Zhaoqi Xiong, Thanh T Bui, Siim Kaupmees, Riyad Bensous-
sane, Antoine Bernabeu, Shay Vargaftik, Yaniv Ben-Itzhak, and Noa Zilberman.
2022. IIsy: Practical In-Network Classification. arXiv preprint arXiv:2205.08243
(2022).

[17] Changgang Zheng, Mingyuan Zang, Xinpeng Hong, Riyad Bensoussane, Shay
Vargaftik, Yaniv Ben-Itzhak, and Noa Zilberman. 2022. Automating In-Network
Machine Learning. arXiv preprint arXiv:2205.08824 (2022).

[18] Changgang Zheng and Noa Zilberman. 2021. Planter: seeding trees within
switches. In Proceedings of the SIGCOMM’21 Poster and Demo Sessions. 12–14.

http://www.nasdaqtrader.com/content/technicalsupport/specifications/dataproducts/PSXTVITCHSpecification_5.0.pdf
http://www.nasdaqtrader.com/content/technicalsupport/specifications/dataproducts/PSXTVITCHSpecification_5.0.pdf

	Abstract
	1 Introduction
	2 High-Level Architecture
	3 Limit Order Books in Linnet
	4 Preliminary Evaluation
	5 Conclusion and Future Work
	Acknowledgments
	References

