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ABSTRACT
Financial trading often relies nowadays on machine learning. How-
ever, many trading applications require very short response times,
which cannot always be supported by traditional machine learning
frameworks. We present Linnet, providing financial market predic-
tion within programmable switches. Linnet builds limit order books
from high-frequency market data feeds within the switch, and uses
them for machine-learning based market prediction. Linnet demon-
strates the potential to predict future stock price movements with
high accuracy and low latency, increasing financial gains.
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• Networks → In-network processing; Programmable net-
works; • Computing methodologies→Machine learning.
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1 INTRODUCTION
High frequency trading (HFT) requires executing trades at high
speed, with latency measured in microseconds [5] and where ev-
ery nanosecond counts. Machine learning (ML) and deep learning
approaches are applied nowadays to problems arising in HFT, in-
creasing the demand for reduced latency across all components of
the trade.

Over the past few decades, equity and derivative markets have
witnessed an increasing use of electronic limit order books (LOBs) [3].
Formed by unmatched limit orders with specified prices, LOBs pro-
vide real-time information for traders and support market trans-
parency [1]. In most electronic marketplaces, bids and offers are
matched based on price/time priority rules [8]. When multiple or-
ders with the same price are queuing for execution, the earliest
active order is given top trading priority. Fast response time makes
the difference between being the first to last order executed.
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In-network computing executes applications within network
devices with low latency and high throughput [12]. Although the
application of in-network computing to ML is constrained, it has
been demonstrated that trained ML models can be deployed within
network devices to solve classification tasks [11, 13, 16]. Therefore,
in-network ML becomes a potential solution for low latency trading
as well as numerous time-sensitive financial applications.

This work focuses on exploring the application of in-network
ML to a typical problem in HFT: predicting future price movements
from market microstructure signals. Such prediction leads to higher
profitability and was shown to be feasible (ML-wise) in previous
work [6]. We design and implement Linnet, an in-network appli-
cation prototype for generating, keeping, and updating an LOB
based on order-based market data feeds, and using it to predict fu-
ture price movements. A preliminary evaluation shows that Linnet
achieves minimal loss of accuracy and f1-score compared with a
server-based benchmark. Linnet was implemented on a behavioral
model version 2 (bmv2), and will be extended to switch-ASICs or
data processing units (DPUs).

2 HIGH-LEVEL ARCHITECTURE
Linnet accelerates stock price movement prediction by construct-
ing and updating LOBs within the programmable data plane. The
high-level system architecture is shown in Figure 1: in traditional
solutions, orders’ information goes from the stock exchange to
the traders’ servers through a switch, and the LOB is constructed
within the server (and its accelerators). In contrast, in Linnet the
LOB construction and ML algorithm are implemented within the
switch, eliminating the latency of getting to the server, and its
processing latency.
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Figure 1: Architecture Design of the Linnet prototype.

NASDAQ is the world’s first electronic stock market. A NASDAQ
trace of market by order (MBO) data [10] is used for this study. MBO
messages are used to construct an LOB within a P4-programmable
network device, and then information from the LOB is used to
predict stock price movement using a trained ML model, running
within the same device. For training and exploration purposes,
only a single stock is used at a time, where stocks are identified
within MBO messages. The constructed LOB follows the principle
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of price/time priority. At each timestamp, features are extracted
from the current state of the LOB, including different levels on both
buy and sell sides, with information on both price and volume. The
current bid-ask midpoint (mid-price) is calculated in order to create
labels that represent the direction of price changes.

3 LIMIT ORDER BOOKS IN LINNET
LOBs are implicitly derived from MBO data [14]. The typical struc-
ture of MBO data includes the fields timestamp, type, ID, side, size
and price of an order. In Figure 2 Step ❶, “Type” refers to the type
of instruction (to add, cancel, or update an order) and “Side” shows
whether an order is a bid (buy) order or an ask (sell) order. Only
add-order messages are currently used to update an LOB in our
prototype. Figure 2 Step ❷ demonstrates an exemplary slice of an
LOB. It includes two types of orders residing in the bid side and ask
side. While a bid order is used to buy an asset at or below a specified
price, an ask order does the opposite, selling an asset at or above a
given price [15]. A mid-price sits at the midpoint of the highest bid
price and the lowest ask price. Figure 2 Step ❸ illustrates how an
LOB is updated with MBO messages. In the shown workflow, ask
orders are used as an example, and bid orders are handled by the
algorithm in a similar way.
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Figure 2: ❶ Market by order (MBO) data fields, ❷ graphical
representation of a limit order book (LOB), and ❸ workflow
of updating an LOB with MBO messages.

One of the biggest challenges of implementing in the data plane
the update process of an LOB is that P4 inherently does not support
loops. Consequently, there is a trade-off between accurate extrac-
tion of high-level features from the LOB and resource consumption
within switches. In our prototype’s implementation, if any block of
code needs to be executed a number of times, loop unrolling is used.
This prevents excessive resource overhead in the switch without a
significant loss of prediction accuracy.

4 PRELIMINARY EVALUATION
NASDAQ’s Historical TotalView-ITCH sample data feeds [10] are
reconstructed and filtered using [2], with the trace used to test Lin-
net. Planter, a framework for in-network ML deployment [17, 18],
provides the ML substrate, with server-side benchmarks based on
Scikit-learn [9]. Given their wide use in similar tasks over the past

decades, naive Bayes (NB), decision trees (DTs), random forests
(RFs), and extreme gradient boosting (XGB) are chosen for stock
price movement prediction. The features used for ML model train-
ing are the volumes at the first three levels of an LOB, as well as the
mid-price. Since financial data is highly stochastic with low signal-
to-noise ratio, a smoothing labelling method is applied as part of
the training to produce more consistent signals [7]. The synthetic
minority over-sampling technique (SMOTE) is used to solve the
class-imbalance problem [4]. Taking three different stocks (COST,
NVDA, and ASML) as an example, Table 1 shows the preliminary
evaluation results in terms of accuracy (ACC) and f1-score (F1).

COST NVDA ASML
Switch (L) Sklearn (U) Switch (L) Sklearn (U) Switch (L) Sklearn (U)

Model ACC F1 ACC F1 ACC F1 ACC F1 ACC F1 ACC F1
NB 92.9 45.7 93.1 45.9 79.8 66.2 81.3 66.7 89.2 43.5 91.3 46.2
DT 92.5 61.5 93.4 62.6 91.8 56.2 96.2 63.1 97.0 79.9 98.7 90.0
RF 93.1 62.3 93.2 62.4 96.3 68.2 97.9 73.7 96.0 69.3 98.2 82.3
XGB 86.3 79.8 90.0 83.3 95.7 62.9 97.9 69.5 95.1 72.0 95.1 76.1

Table 1: Preliminary evaluation results (%). Linnet runs on
a switch with (L)imited model size and the benchmark runs
on a server with (U)nlimited model size.

Among all themodels for these three stocks, the average accuracy
loss of Linnet is 1.7% compared to the benchmark while the average
f1-score loss is 4.5%. Linnet achieves the same accuracy as the
benchmark in some cases. Given that the size of the models mapped
into the programmable switch was limited, Linnet’s performance
is promising.

5 CONCLUSION AND FUTUREWORK
This paper presents the application of in-network ML for time-
sensitive financial trading. Linnet, a prototype for building and
updating limit order books in the data plane, is designed and de-
ployed on programmable network devices. The preliminary evalua-
tion shows that Linnet enables accurate feature extraction, keeping
high prediction accuracy compared with the benchmark. In future
work, Linnet will be extended to more types of programmable net-
work devices under more complex real-world scenarios, and will
be evaluated for latency and resource overhead.
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